Mobile SLAM Color 3D Laser Scanner R8+ GUIDE

Chapter 1 Device Component

1.1 Host Module

A terminal for storing, sending, and receiving information.

1.3 Lithium Battery

For device power supply. (1 set of 2 batteries, 3 hours operation time)

1.2 Handheld Module

For collecting image data, point cloud data, etc. (There are three lidar models: 32-120m, and 32-300m)

*Note:

a) The laser lable is at the back of the Handheld Module;

b) Laser safety levels are classified according to IEC 60825-1: 2014;

 c) Caution – Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure;

d) The laser module information is as follows :

<i>'</i>	Wavelength:	905mm	
	Laser safety level:	Class1	

1.4 Hot-plug Board

The hot-plug board can be mounted with 2 batteries. A power low battery can be directly replaced during operation, so that the device will not stop working.

1.5 Charger

For lithium battery charging (2-mount), the charger shows the battery power status in real time.

1.8 Dongle

For the software encryption lock.

1.9 USB Key

For data copy. (Equipped with a 128GB USB Key).

1.6 Back Frame

For fixing each module on device in wearable mode, including an extension rod with a V-shaped buckle method.

1.7 GNSS Module

For receiving satellite data and base station data (RTK); (available: GPS/Galileo/GLONASS/QZSS/BDS)

1.10 Mobile Terminal

For controlling the begin and finish of collecting operation by using WiFi through Mobile Terminal. Mobile Terminal offers visual interface for Human-Computer Interaction(HCI).

1.11 Peer Plate

For the control points of handheld mode acquisition, to generate absolute coordinates for point clouds.

1.13 Cables

For power supply and data transmission of each module. There are 3 cables:

- **#1**: A connection cable between the Host and the Handheld Module for Handheld Device.
- **#2**: A connection cable between the Host and the Handheld Module for Wearable Device.
- **#3**: A connection cable between the Handheld Module and GNSS Module.

1.14 Safety Box

For transportation or storage of the Host & Accessories.

1.12 Shoulder Strap

Shoulder strap makes the Host go anywhere with operators for the Handheld Device.

*Refer to the Assembly Video.

- 2.1. Wearable Device Assembly
- 2.1.1 The Frame of Wearable Device Assembly

2) Place the tripod down (see the Λ);

4) Make sure the <u>cross-section D</u> needs to be abreasted, it means the rod is assembled in right place (see the);

3) Connect the extension rod to the back frame (see the ↑);
* Assemble the rod with pushing the *buckle B & buckle C*.

Chapter 2 Assembly & Disassembly

2.1.2 Safety Box Opening

Push the <u>buckle E</u> and pull out <u>the buckle F</u> to open the BOX.
 (see the ↑)* Push the buckle E and pull out the buckle F at the same time.

2.1.3 Battery and the Host Connecting

1) Match the *indentation G* with the *indentation H*, push the hot-plug board with batteries down straight to the end (see the .).

2.1.4 Battery and the Hot-plug Board Connecting

1) Pull out the batteries from the hot-plug board toward the <u>lock button</u> side with pressing the lock button (see the $\sqrt{}$).

a.

C.

2.1.5 The Host and Back Frame Connecting

1) Match the *indentation I* with the *indentation J*, connect the Host onto the Back Frame with pushing the *button J-1* (see the).

2.1.6 The Handheld Module and Back Frame Connecting

1) Match the *indentation K* with the *indentation L*, connect the Handheld Module onto the Back Frame (see the).

2.1.7 The GNSS Module and Back Frame Connecting

1) Match the *indentation M* with the *indentation N*, connect the Handheld Module onto the Back Frame (see the).

2) Make sure the *cross-section O* needs to be abreasted, it means the rod is assembled in right place (see the);

a.

1) Push the <u>plug P</u> into the <u>interface Q (type-C)</u>, see the (). **#2 cable is for the connection between the Host & the Handheld Module** *Note: The <u>metal button Q-1</u> must on the batteries side.

b.

* The cable No# can be checked from the 1.13 chapter.

а.

2) Push the <u>plug R</u> into the <u>interface S (type-C)</u>. **#2 cable is for the connection between the Host & the Handheld Module** *Note: The <u>metal button R-R</u> must be upward.

* The <u>*L-shape Plug*</u> is for the Handheld Module of Wearable Device (<u>*Plug R*</u>).

* The cable No# can be checked from the 1.13 chapter. b.

3) Insert the <u>plug T</u> into the <u>interface U</u>. **#3 cable is for the connection between the Handheld Module & the GNSS Module(antenna disk)** *Note: The red-dot on the <u>plug T</u> must be aligned to the <u>indentation U-1</u>, so that the method of inserting is correct.

4) Insert the *plug V* into the *interface W*, connect the Handheld Module with the GNSS Module.
#3 cable is for the connection between the Handheld Module & the GNSS Module(antenna disk)

*Note: The red-pod on the <u>plug V</u> must be aligned to the <u>indentation W-1</u>, so that the method of inserting is correct, otherwise the GNSS Module would be short-circuited.

* The *I-shape Plug* is for the Handheld Module (*interface W*).

2.2 Handheld Device Assembly

2.2.1 Handheld Module Assembly

1) Tighten the *screw X* into the *screw hole Y*, then the Handheld Device can stand.

2.2.2 Shoulder Strap Assembly of Handheld Device

1) Loose the *buttonZ* from the Shoulder Strap.

2) Tighten the *button Z* on the *Host fix hole*.

3) Insert the *button Z* into the *shoulder buckle*, then the Shouler Strap for the Host is correct.

2.2.3 Cables Assembly of Handheld Device

Push the <u>plug P-1</u> into the <u>interface Q (type-C)</u>, see the ().
 *Note: The <u>metal button Q-1</u> must be on the batteries side.

* The <u>*I-shape Plug*</u> is for the Host only (<u>*Plug P-1*</u>).

C.

2.2.3 Cables Assembly of Handheld Device

Push the <u>plug R-1</u> into the <u>interface S (type-C)</u>. **#1 cable is for the connection between the Handheld Device & the Host.** *Note: The <u>metal button R-R</u> must be upward.

Plug R-1 of #1 cable

* The <u>*L-shape Plug*</u> is for the Handheld Module of Handheld Device (<u>*Plug R-1*</u>).

* The cable No# can be checked from the 1.13 chapter.

C.

3.1 Batteries Charging

Chapter 3 Charger Use

1) Match the *indentation A1* with the *indentation B1*, push the batteries down straight to the end (see the). * Note: 1 time charge with 1 battery or 1 time charge with 2 batteries is OK.

b.

C.

3.1 Batteries Charging

2) Insert the *plug C1* into the *power interface D1*, check if the Charger Screen is on, if it shows like *E1*, it means the batteries are charged correctly.

a.

b.

C.

d.

Chapter 4 Power On

4.1 Power on the Device

Smislam

284

b.

MASTER O SENSOR O

1) Turn the <u>Sensor</u> on, it becomes Blue, then wait for 5 seconds.

2) Turn the *Master* on, it becomes Red, then wait for 20 seconds.

3) Turn the <u>*Camera*</u> on, until the status light turns from <u>*red*</u> to <u>*blue*</u>.

a.

4) Wait for the *Screen* shows the image, it means the camera is working correctly.

5.1 WiFi Connection Guide

Chapter 5 WiFi Use

- 1) Before connecting the Capture and the Device, the Customer needs to get the right WiFi;
- 2) Turn on [WiFi];

- 3) Choose the WiFi which is named by the *Device Serial No.*(the S/N is at the back of the Host or the Handheld Device); *all decvice password: 12345678
- 4) If the WiFi connection is successful, then go to the next;

Chapter 6 Capture Use

6.1 Capture Use Guide

O 🧄 O			(<u>)</u> ?	23:48	
	🕸 No intern	et conne	ction			
▲ 192	2.168.95.1	1 0 :888	8	1	:	
System	P Project	Dat	a	i Log		
OFF 0.0% Network Battery	808.0G	0/0.0/ RT	/0/N ĸ	NO DIFF	0G Camera	
			SN:R8	332PF:	24 3006 S rid	
OmniSLAM Tech	nology		V 0.0	ersion	: 3.3.32	
Time			Dista	nce		
0 0 LiDAR IMU	0/0, GNSS/PP	/ 0 k/gcp	0 Camer	a	0 Motor	
	Init System	ı		C	onfig	
Mode QXWZ	-				-	
IP 203.107.4	5.154	Name	jgx004	ł		
Port 8003		PWD			•••	
Node		-	Get	S	Save	

\$

i 💿 🤝				<u>0</u> ?	23:48
	🖎 No intern	et conne	ection		
▲ 19.	2.168.95.1′	10 :888	8	1	:
System	P Project	Dat	a	i Log	
OFF 0.0% Network Battery	808.0G _{Disk}	0/0.0, RT	/0/N ĸ	NO DIFF	0G Camera
			SN:R8	332PF2	24 3006 S rid
OmniSLAM Tecl	nnology		V	ersion:	3.3.32
0:0:0 Time)	0.00 Distance			
0 0 Lidar Imu	0/0/ GNSS/PP	/ 0 ĸ/gcp	0 Came	ra	0 Motor
	Init System	1		Ça	ontig
Mode QXW	Z			4)	T
IP 203.107.4	5.154	Name	jgx004	4	
Port 8003		PWD		• • •	•••
Node		-	Get	S	ave
Conne	ct		Discon	nect	

1) Choose a [Browser]

2) Get in [Capture] of which the IP is [192.168.95.110:8888];

- 3) Get in [System];
- 4) Choose 【Config】;

- 2) For the GNSS, you could choose [OmniSLAM] [E300Pro];
- 3) For the Camera, you could choose [0.5s] [1.0s] [2.0s];
- 4) Get in [Available] to choose a usable WiFi;

- 5) Choose a usable WiFi;
- 6) Fill the WiFi [Password];
- 7) 【Connect】 the WiFi;
- 8) If the WiFi connected successfully, it shows [Connected WiFi];
- 9) Choose **[**OK**]** for the next;

i 🗊 🖓 🚺	0) ? [23:49
		🖎 No interr	net conne	ection		
仚	▲ 192	2.168.95.1	10 :888	8	1	:
s		P			i	
ON	0.0%	808.0G	0/0.0	.a /0/N 1	NO	0G
0930 1	15:13:11]	init system	data qi	al Sb eR8	32PF2	43006
10930 1	15:13:11]	init gnss!				✓ Grid
10930 1	15:13:11]	camera mo	ode 0.5 \$	S		
OmniSl	LAM Tech	nnology	11	Ve	rsion:	3.3.32
	0:0:0 Time			0.00 Distan) ice	
0 LiDAR	0 ІМИ	0/0 GNSS/PF	/ 0 pk/gcp	0 Camera		0 Motor
		Init Systen	n		Cc	onfig
Mode	e QXWZ	2				-
IP 2	203.107.4	5.154	Name	jgx004		
Port	Port 8003				•••	•
Node	;		-	Get	S	ave
Connect				Disconn	ect	

10) Choose [Init System];

- 11) Wait for the data processing and initializing;
- 12) If [Init System] successfully, choose [OK] for the next;
- 13) Choose [Mode], select [CORS];

SmislaM

i 🗊 🦙 🖸)@□	23:50		
No internet connection							
▲ 192.	168.95.1′	10 :888	8	1	:		
System	P Project	Dat	a	i Log			
ON 65.0% Network Battery	808.0G _{Disk}	4/1.0/ RT	12/Ү Ү к D	ES 1	17G amera		
			SN:R83	2PF24	3006		
AUTO				۲	Grid		
^o RTCM30_G	G			0	3.3.32		
RTCM23_G	iPS			0	0 lotor		
RTCM32_G	GB 1	4)		0	ıfig		
Mode QXWZ					-		
IP 203.107.45.	154	Name	jgx004				
Port 8003		PWD		•••	•		
Node RTCM32_	GGB	-	Get	Sa	ve		
Connect			Disconne	ect			

14) Choose [Node], use the correct one, then [Connect], the DIFF will become [Yes] for the outside using environment; 14-1) Choose [Node], use the correct one; *If the using environment is indoor, then do not [Connect] for the next;

15) Get in [Project];

16) Build the [Project Name]; Turn on the [Realtime]

17) Get to 【Start】;

18) Wait around 14-15 seconds, until the LiDAR start to rotate;

19) When the Project initialization completed, choose [OK] for the next, it means the customer is available to wear the device to work;

- 20) When the project scan is done, choose [Stop];
- 21) Choose [OK] for the next;
- 22) Wait for 5-10 seconds to let the system process and check the operation data;

23) If there is [Data check successfully] coming out, it means the scanning is stopped successfully without mistake, so Choose [OK] for CLOSE.

0 🖙 0 🔽	🕸 No intern	et connectio	0;?	23:54
▲ 19	2.168.95.1	10 :8888	1	:
System	P Project))) Data	i	9
Project 10/	1 3.9G/0.1G	;	Refresh	Delete
✓ R832PF243006	5_240930_15	51405_test1	23	Check
R832PF24	3006_24093	30_111415_	test4	Check
R832PF24	3006_24093	30_111124_	test3	Check
R832PF24	3006_24093	80_103114_	test2	Check
R832PF24	3006_24093	30_103023_	test2	Check
R832PF24	3006_24093	80_100514_	test1	Check
R832PF24	3006_24092	29_160200_	test1	Check
R832PF24	3006_24092	29_140248_	csxy	Check
R832PF24	3006_24092	27_140917_	last	Check
Device 0.0 before	G/ 0.0 G Refresh	101007	Refresh	Eject
Сор	У	Ċ	Cancei	
0%				

24) Get in 【Data】;

- 25) Choose [Refresh] for Project; * if you do the Refresh, 9 projects become 10 projects;
- 26) Wait for the data which is new, Choose the new data (normally on the top);
- 27) Then, please insert an USB Key on the Device now, Choose [Refresh] for Device;

- 28) 104.7G means [how much the rest space is];119.2G means [how much the total space is];
- 29) Choose 【Copy】;
- 30) Until the [Progress Bar] finishes loading;
- 31) When the Copy is done, choose [OK] for the next;
- 32) Get in [Log], it is available to check the problems, operation detail, incorrect data, and other informations of all project data.

CARVING THE REAL WORLD ACCURATELY